Author:
Kamiński Bogumił,Prałat Paweł,Théberge François
Abstract
AbstractThe Artificial Benchmark for Community Detection graph (ABCD) is a random graph model with community structure and power-law distribution for both degrees and community sizes. The model generates graphs with similar properties as the well-known LFR one, and its main parameter $$\xi$$
ξ
can be tuned to mimic its counterpart in the LFR model, the mixing parameter $$\mu$$
μ
. In this paper, we extend the ABCD model to include potential outliers. We perform some exploratory experiments on both the new ABCD+o model as well as a real-world network to show that outliers pose some distinguishable properties. This ensures that our new model may serve as a benchmark of outlier detection algorithms.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computer Networks and Communications,Multidisciplinary
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献