Artificial benchmark for community detection with outliers (ABCD+o)

Author:

Kamiński Bogumił,Prałat Paweł,Théberge François

Abstract

AbstractThe Artificial Benchmark for Community Detection graph (ABCD) is a random graph model with community structure and power-law distribution for both degrees and community sizes. The model generates graphs with similar properties as the well-known LFR one, and its main parameter $$\xi$$ ξ can be tuned to mimic its counterpart in the LFR model, the mixing parameter $$\mu$$ μ . In this paper, we extend the ABCD model to include potential outliers. We perform some exploratory experiments on both the new ABCD+o model as well as a real-world network to show that outliers pose some distinguishable properties. This ensures that our new model may serve as a benchmark of outlier detection algorithms.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Reference41 articles.

1. Akoglu L, Tong H, Koutra D (2015) Graph based anomaly detection and description: a survey. Data Min Knowl Discov 29(3):626–688

2. Bandyopadhyay S, Vivek SV, Murty MN (2020) Integrating network embedding and community outlier detection via multiclass graph description. arXiv preprint arXiv:2007.10231

3. Bender EA, Canfield ER (1978) The asymptotic number of labeled graphs with given degree sequences. J Combin Theory Ser A 24(3):296–307

4. Bezanson J, Edelman A, Karpinski S, Shah VB (2014) Julia: a fresh approach to numerical computing, https://arxiv.org/abs/1411.1607

5. Bollobás B (1980) A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur J Combin 1(4):311–316

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting properties of nodes via community-aware features;Social Network Analysis and Mining;2024-06-15

2. Network Embedding Exploration Tool (NEExT);Lecture Notes in Computer Science;2024

3. Self-similarity of Communities of the ABCD Model;Lecture Notes in Computer Science;2024

4. Classification Supported by Community-Aware Node Features;Studies in Computational Intelligence;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3