Geometrical inspired pre-weighting enhances Markov clustering community detection in complex networks

Author:

Durán ClaudioORCID,Muscoloni Alessandro,Cannistraci Carlo VittorioORCID

Abstract

AbstractMarkov clustering is an effective unsupervised pattern recognition algorithm for data clustering in high-dimensional feature space. However, its community detection performance in complex networks has been demonstrating results far from the state of the art methods such as Infomap and Louvain. The crucial issue is to convert the unweighted network topology in a ‘smart-enough’ pre-weighted connectivity that adequately steers the stochastic flow procedure behind Markov clustering. Here we introduce a conceptual innovation and we discuss how to leverage network latent geometry notions in order to design similarity measures for pre-weighting the adjacency matrix used in Markov clustering community detection. Our results demonstrate that the proposed strategy improves Markov clustering significantly, to the extent that it is often close to the performance of current state of the art methods for community detection. These findings emerge considering both synthetic ‘realistic’ networks (with known ground-truth communities) and real networks (with community metadata), and even when the real network connectivity is corrupted by noise artificially induced by missing or spurious links. Our study enhances the generalized understanding of how network geometry plays a fundamental role in the design of algorithms based on network navigability.

Funder

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3