Abstract
AbstractMarkov clustering is an effective unsupervised pattern recognition algorithm for data clustering in high-dimensional feature space. However, its community detection performance in complex networks has been demonstrating results far from the state of the art methods such as Infomap and Louvain. The crucial issue is to convert the unweighted network topology in a ‘smart-enough’ pre-weighted connectivity that adequately steers the stochastic flow procedure behind Markov clustering. Here we introduce a conceptual innovation and we discuss how to leverage network latent geometry notions in order to design similarity measures for pre-weighting the adjacency matrix used in Markov clustering community detection. Our results demonstrate that the proposed strategy improves Markov clustering significantly, to the extent that it is often close to the performance of current state of the art methods for community detection. These findings emerge considering both synthetic ‘realistic’ networks (with known ground-truth communities) and real networks (with community metadata), and even when the real network connectivity is corrupted by noise artificially induced by missing or spurious links. Our study enhances the generalized understanding of how network geometry plays a fundamental role in the design of algorithms based on network navigability.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computer Networks and Communications,Multidisciplinary
Reference36 articles.
1. Adamic LA, Glance N (2005) The political blogosphere and the 2004 U.S. Election: divided they blog. LinkKDD 2005, pp 36–43
2. Athanassopoulos S, Kaklamanis C, Laftsidis I, Papaioannou E (2010) An experimental study of greedy routing algorithms. In: Proceedings of International Conference on High Performance Computing & Simulation, pp 150–156. https://doi.org/10.1109/HPCS.2010.5547143
3. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008:10008. https://doi.org/10.1088/1742-5468/2008/10/P10008
4. Boguñá M, Krioukov D, Claffy KC (2008) Navigability of complex networks. Nat Phys 5:74–80. https://doi.org/10.1038/nphys1130
5. Cannistraci CV, Muscoloni A (2018) Latent geometry inspired graph dissimilarities enhance affinity propagation community detection in complex networks. 20:063022. ArXiv: 180404566
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献