Trophic analysis of a historical network reveals temporal information

Author:

Shuaib ChoudhryORCID,Syed Mairaj,Halawi Danny,Saquib Nazmus

Abstract

AbstractTrophic analysis exposes the underlying hierarchies present in large complex systems. This allows one to use data to diagnose the sources, propagation paths, and basins of influence of shocks or information among variables or agents, which may be utilised to analyse dynamics in social, economic and historical data sets. Often, the analysis of static networks provides an aggregated picture of a dynamical process and explicit temporal information is typically missing or incomplete. Yet, for many networks, particularly historical ones, temporal information is often implicit, for example in the direction of edges in a network. In this paper, we show that the application of trophic analysis allows one to use the network structure to infer temporal information. We demonstrate this on a sociohistorical network derived from the study of hadith, which are narratives about the Prophet Muhammad’s actions and sayings that cite the people that transmitted the narratives from one generation to the next before they were systematically written down. We corroborate the results of the trophic analysis with a partially specified time labelling of a subset of the transmitters. The results correlate in a manner consistent with an observed history of information transmission flowing through the network. Thus, we show that one may reconstruct a temporal structure for a complex network in which information diffuses from one agent to another via social links and thus allows for the reconstruction of an event based temporal network from an aggregated static snapshot. Our paper demonstrates the utility of trophic analysis in revealing novel information from hierarchical structure, thus showing its potential for probing complex systems, particularly those with an inherent asymmetry.

Funder

University of California, Davis

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3