Explaining classification performance and bias via network structure and sampling technique

Author:

Espín-Noboa LisetteORCID,Karimi Fariba,Ribeiro Bruno,Lerman Kristina,Wagner Claudia

Abstract

AbstractSocial networks are very important carriers of information. For instance, the political leaning of our friends can serve as a proxy to identify our own political preferences. This explanatory power is leveraged in many scenarios ranging from business decision-making to scientific research to infer missing attributes using machine learning. However, factors affecting the performance and the direction of bias of these algorithms are not well understood. To this end, we systematically study how structural properties of the network and the training sample influence the results of collective classification. Our main findings show that (i) mean classification performance can empirically and analytically be predicted by structural properties such as homophily, class balance, edge density and sample size, (ii) small training samples are enough for heterophilic networks to achieve high and unbiased classification performance, even with imperfect model estimates, (iii) homophilic networks are more prone to bias issues and low performance when group size differences increase, (iv) when sampling budgets are small, partial crawls achieve the most accurate model estimates, and degree sampling achieves the highest overall performance. Our findings help practitioners to better understand and evaluate their results when sampling budgets are small or when no ground-truth is available.

Funder

GESIS – Leibniz-Institut für Sozialwissenschaften e.V.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3