Normalised degree variance

Author:

Smith Keith M.ORCID,Escudero Javier

Abstract

AbstractFinding graph indices which are unbiased to network size and density is of high importance both within a given field and across fields for enhancing comparability of modern network science studies. The degree variance is an important metric for characterising network degree heterogeneity. Here, we provide an analytically valid normalisation of degree variance to replace previous normalisations which are either invalid or not applicable to all networks. It is shown that this normalisation provides equal values for graphs and their complements; it is maximal in the star graph (and its complement); and its expected value is constant with respect to density for Erdös-Rényi (ER) random graphs of the same size. We strengthen these results with model observations in ER random graphs, random geometric graphs, scale-free networks, random hierarchy networks and resting-state brain networks, showing that the proposed normalisation is generally less affected by both network size and density than previous normalisation attempts. The closed form expression proposed also benefits from high computational efficiency and straightforward mathematical analysis. Analysis of 184 real-world binary networks across different disciplines shows that normalised degree variance is not correlated with average degree and is robust to node and edge subsampling. Comparisons across subdomains of biological networks reveals greater degree heterogeneity among brain connectomes and food webs than in protein interaction networks.

Funder

Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

Reference40 articles.

1. Ábrego, BM, Fernãndez-Merchant S, Neubauer MG, Watkins W (2009) Sum of squares of degrees in a graph. J Inequalities Pure Appl Math 10(3):64.

2. Ahlsewade, R, Katona GOH (1978) Graphs with maximal number of adjacent pairs of edges. Acta Math Acad Sci Hungar 32:97–120.

3. Alberston, MO (1997) The Irregularity of a Graph. Ars Combinatorica 46:219–225.

4. Barabási, AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512.

5. Batty, M (2008) The Size, Scale, and Shape of Cities. Science 319(5864):769–771.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3