A framework for reconstructing transmission networks in infectious diseases

Author:

Najem Sara,Monni Stefano,Hatoum Rola,Sweidan Hawraa,Faour Ghaleb,Abdallah Chadi,Ghosn Nada,Hassan Hamad,Touma Jihad

Abstract

AbstractIn this paper, we propose a general framework for the reconstruction of the underlying cross-regional transmission network contributing to the spread of an infectious disease. We employ an autoregressive model that allows to decompose the mean number of infections into three components that describe: intra-locality infections, inter-locality infections, and infections from other sources such as travelers arriving to a country from abroad. This model is commonly used in the identification of spatiotemporal patterns in seasonal infectious diseases and thus in forecasting infection counts. However, our contribution lies in identifying the inter-locality term as a time-evolving network, and rather than using the model for forecasting, we focus on the network properties without any assumption on seasonality or recurrence of the disease. The topology of the network is then studied to get insight into the disease dynamics. Building on this, and particularly on the centrality of the nodes of the identified network, a strategy for intervention and disease control is devised.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computer Networks and Communications,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3