Abstract
AbstractWe propose a unified framework to represent a wide range of continuous-time discrete-state Markov processes on networks, and show how many network dynamics models in the literature can be represented in this unified framework. We show how a particular sub-set of these models, referred to here as single-vertex-transition (SVT) processes, lead to the analysis of quasi-birth-and-death (QBD) processes in the theory of continuous-time Markov chains. We illustrate how to analyse a number of summary statistics for these processes, such as absorption probabilities and first-passage times. We extend the graph-automorphism lumping approach [Kiss, Miller, Simon, Mathematics of Epidemics on Networks, 2017; Simon, Taylor, Kiss, J. Math. Bio. 62(4), 2011], by providing a matrix-oriented representation of this technique, and show how it can be applied to a very wide range of dynamical processes on networks. This approach can be used not only to solve the master equation of the system, but also to analyse the summary statistics of interest. We also show the interplay between the graph-automorphism lumping approach and the QBD structures when dealing with SVT processes. Finally, we illustrate our theoretical results with examples from the areas of opinion dynamics and mathematical epidemiology.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computer Networks and Communications,Multidisciplinary
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献