Haque’s approach with mickens’ iteration method to find a modified analytical solution of nonlinear jerk oscillator containing displacement time velocity and time acceleration

Author:

Ali Md. Ishaque,Haque B. M. IkramulORCID,Hossain M. M. AyubORCID

Abstract

AbstractHaque’s approach with Mickens’ iteration method has been used to obtain the modified analytical solutions of the nonlinear jerk oscillator, including displacement time velocity and acceleration. The jerk oscillator represents the features of chaotic behavior in numerous nonlinear phenomena, cosmological analysis, kinematical physics, pendulum analysis, etc., such as electrical circuits, laser physics, mechanical oscillators, damped harmonic oscillators, and biological systems. In this paper, we have used different harmonic terms for different iterative stages using the truncated Fourier series. A comparison is made between the iteration method, the improved harmonic balance method, and the homotopy perturbation method. After comparison, the suggested approach has been shown to be more precise, efficient, simple, and easy to use. Furthermore, there was remarkable accuracy in the comparison between the numerical results and the generated analytical solutions. For the third approximate period, the maximum percentage error is 0.014.

Publisher

Springer Science and Business Media LLC

Reference39 articles.

1. Hu H (2008) Perturbation method for periodic solutions of nonlinear jerk equations. Phys Lett A 372:4205–4209

2. Ramos JI (2010) Approximate methods based on order reduction for the periodic solutions of nonlinear third-order ordinary differential equations. Appl Math Comput 215:4304–4319

3. Ramos JI, Garcia-Lopez CM (2010) A volterra integral formulation for determining the periodic solutions of some autonomous, nonlinear, third-order ordinary differential equations. Appl Math Comput 216:2635–2644

4. Ramos JI (2010) Analytical and approximate solutions to autonomous, nonlinear, third-order ordinary differential equations. Nonlinear Anal Real 11:1613–1626

5. Ma X, Wei L, Guo Z (2008) He’s homotopy perturbation method to periodic solutions ofnonlinear jerk equations. J Sound Vib 314:217–227

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3