In silico anti-quorum sensing activities of phytocompounds of Psidium guajava in Salmonella enterica serovar Typhi

Author:

Olaniyi Temitope DeborahORCID,Adetutu Adewale

Abstract

AbstractBiofilm contributes hugely to the persistence of typhoid fever in human population and quorum sensing (QS) is an integral mechanism involved in biofilms. Interruption of the QS network has therefore been put forward as one of the important anti-virulence strategies. Methanol extract of Psidium guajava leaves has been confirmed to possess antibacterial and anti-biofilm activities against Salmonella Typhi. This study therefore aimed at investigating the interactions of phytocompounds previously identified in the extract with selected QS proteins of S. Typhi in silico. Appropriate formats of compounds were retrieved and translated using online web servers. Quantitative estimate of drug-likeness, as well as absorption, distribution, metabolism, excretion and toxicity profiles of the compounds, were assessed on ADMETlab 2.0. Three-dimensional structures of two QS proteins of S. Typhi were obtained from Protein Data Bank while others were modelled on SWISS-MODEL. Selected compounds (ligands) were docked with the four proteins via AutoDock 1.5.6 and analyzed on Discovery studio. Eight, out of the seventy-two, phyto-compounds of methanol extract of P. guajava possess desirable drug-likeness (QED > 0.67). Three of them have toxic characteristics and thus, were removed from further consideration. Molecular docking revealed that, of the 5 ligands docked against the proteins, only Benzeneethanamine, 4-methoxy- and Cyclopentadecanone, 2-hydroxy- had affinities for the proteins of interest. The affinity of Cyclopenftadecanone,2-hydroxy- for each of the proteins is higher than that of Benzeneethanamine,4-methoxy- with hydrogen bonds contributing significantly to the interactions. Benzeneethanamine, 4-methoxy- and Cyclopentadecanone,2-hydroxy- from Psidium guajava leaves possess inhibitory properties against QS proteins of S. Typhi.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3