Publisher
Springer Science and Business Media LLC
Reference8 articles.
1. R. D. Anderson,On homeomorphisms as products of conjugates of a given homeomorphism and its inverse, inTopology of 3-manifolds (M. K. Fort, ed.), Prentice Hall, 1961.
2. J. R. Choksi and S. Kakutani,Residuality of ergodic measurable transformations and of ergodic transformations which preserve an infinite measure, Indiana Univ. Math. J.28 (1979), 453–469.
3. D. B. Epstein, Diff(M)is simple?, in Symposium on Differential Equations and Dynamical Systems, Warwick, 1968–69, Lecture Notes206, Springer-Verlag, pp. 52–54.
4. A. Fathi,Le groupe des transformations de [0, 1]qui preservent la measure de Lebesgue est un groupe simple, Israel J. Math.29 (1978), 302–308.
5. A. Fathi, private communication.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Ergodic Theory: Nonsingular Transformations;Encyclopedia of Complexity and Systems Science Series;2023
2. Ergodic Theory: Nonsingular Transformations;Encyclopedia of Complexity and Systems Science;2022
3. Chief factors in Polish groups;Mathematical Proceedings of the Cambridge Philosophical Society;2021-06-30
4. Connected Polish groups with ample generics;Bulletin of the London Mathematical Society;2015-11-20
5. On full groups of non-ergodic probability-measure-preserving equivalence relations;Ergodic Theory and Dynamical Systems;2015-06-15