Abstract
AbstractIn this paper, we describe an elementary method for counting the number of non-isomorphic algebras of a fixed, finite dimension over a given finite field. We show how this method works in the case of 2-dimensional algebras over the field $${\mathbb {F}}_{2}$$
F
2
.
Funder
Delft University of Technology
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference5 articles.
1. Althoen, S.C., Hansen, K.D.: Two-dimensional real algebras with zero divisors. Acta Sci. Math (Szeged) 56, 23–42 (1992)
2. Henderson, H.V., Searle, S.R.: The vec-permutation matrix, the vec operator and Kronecker products: a review. Linear Multilinear Algebra 9(4), 271–288 (1981)
3. Petersson, H.P.: The classification of two-dimensional nonassociative algebras. Results Math. 37(1–2), 120–154 (2000)
4. Petersson, H.P., Scherer, M.: The number of nonisomorphic two-dimensional algebras over a finite field. Results Math. 42(1–2), 137–152 (2004)
5. Rotman, J.J.: An Introduction to the Theory of Groups. Grad. Texts in Math., vol. 148. Springer, Berlin (2012). ISBN: 9781461241768
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Complete classification of two-dimensional algebras over any basic field;6TH INTERNATIONAL CONFERENCE ON MATHEMATICAL APPLICATIONS IN ENGINEERING;2023