Abstract
AbstractBy using quasi-Banach techniques as key ingredient we prove Poincaré- and Sobolev- type inequalities for m-subharmonic functions with finite (p, m)-energy. A consequence of the Sobolev type inequality is a partial confirmation of Błocki’s integrability conjecture for m-subharmonic functions.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference50 articles.
1. Åhag, P., Czyż, R.: Modulability and duality of certain cones in pluripotential theory. J. Math. Anal. Appl. 361(2), 302–321 (2010)
2. Åhag P., Czyż R.: An inequality for the beta function with application to pluripotential theory. J. Inequal. Appl. Art. ID 901397 (2009)
3. Åhag, P., Czyż, R.: On the Moser-Trudinger inequality in complex space. J. Math. Anal. Appl. 479(2), 1456–1474 (2019)
4. Åhag, P., Czyż, R.: An a characterization of $$m$$-subharmonic functions with weak singularities. Ann. Polon. Math. 123(1), 21–29 (2019)
5. Åhag, P., Czyż, R., Hed, L.: The geometry of $$m$$-hyperconvex domains. J. Geom. Anal. 28(4), 3196–3222 (2018)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献