Abstract
AbstractLet $$\Gamma _n(\mathcal {\scriptstyle {O}}_{\mathbb {K}})$$
Γ
n
(
O
K
)
denote the Hermitian modular group of degree n over an imaginary quadratic number field $$\mathbb {K}$$
K
and $$\Delta _{n,\mathbb {K}}^*$$
Δ
n
,
K
∗
its maximal discrete extension in the special unitary group $$SU(n,n;\mathbb {C})$$
S
U
(
n
,
n
;
C
)
. In this paper we study the action of $$\Delta _{n,\mathbb {K}}^*$$
Δ
n
,
K
∗
on Hermitian theta series and Maaß spaces. For $$n=2$$
n
=
2
we will find theta lattices such that the corresponding theta series are modular forms with respect to $$\Delta _{2,\mathbb {K}}^*$$
Δ
2
,
K
∗
as well as examples where this is not the case. Our second focus lies on studying two different Maaß spaces. We will see that the new found group $$\Delta _{2,\mathbb {K}}^*$$
Δ
2
,
K
∗
consolidates the different definitions of the spaces.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference10 articles.
1. Braun, H.: Hermitian modular functions III. Ann. Math. 53, 143–160 (1950)
2. Braun, H.: Der Basissatz für hermitesche Modulformen. Abh. Math. Sem. Univ. Hamburg 19, 134–148 (1955)
3. Cohen, D., Resnikoff, H.L.: Hermitian quadratic forms and Hermitian modular forms. Pac. J. Math. 76(2), 329–337 (1978)
4. Heim, B., Krieg, A.: The Maaß Space for Paramodular Groups. Preprint arXiv:1711.06619. To appear in Kyoto Journal of Mathematics
5. Hentschel, M., Krieg, A., Nebe, G.: On the classification of even unimodular lattices with a complex structure. Int. J. Number Theory. (2012). https://doi.org/10.1142/S1793042112500583
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On Hermitian Eisenstein series of degree $2$;Functiones et Approximatio Commentarii Mathematici;2023-03-23
2. Maximal descrete subgroups of ⁺(2,+2);P AM MATH SOC;2021-10-25