Abstract
AbstractLet $$B_N$$
B
N
be the Euclidean ball of $${\mathbb {C}}^N$$
C
N
. The space $$H^\infty (B_N)$$
H
∞
(
B
N
)
of bounded holomorphic functions on $$B_N$$
B
N
is known to have a predual, denoted by $$G^\infty (B_N)$$
G
∞
(
B
N
)
. We study the functions in $$H^\infty (B_N)$$
H
∞
(
B
N
)
that attain their norm as elements of the dual of $$G^\infty (B_N)$$
G
∞
(
B
N
)
. We also examine similar questions for the polydisc algebra $$H^\infty ({\mathbb {D}}^N)$$
H
∞
(
D
N
)
and for the space of Dirichlet series $$ {\mathcal {D}}^\infty ({\mathbb {C}}_+).$$
D
∞
(
C
+
)
.
Funder
Ministerio de Ciencia e Innovación
Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Ando, T.: On the predual of $$H^\infty $$. Commentationes Mathematicae: Tomus Specialis in Honorem Ladislai Orlicz 1, 33–40 (1978)
2. Bollobás, B.: Linear analysis, 2nd edn. An introductory course, Cambridge Mathematical Textbooks, Cambridge University Press (1999)
3. Boos, L.J.: Totally null sets for $$A(X)$$. Bull. Aust. Math. Soc. 87, 108–114 (2013)
4. Defant, A., García, D., Maestre, M., Sevilla-Peris, P.: Dirichlet Series and Holomorphic Functions in High Dimensions, New Mathematical Monographs, vol. 37, Cambridge University Press (2019)
5. Fatou, P.: Séries trigonométriques et séries de Taylor. Acta Math. 30, 335–400 (1906)