Abstract
AbstractThe general position number $$\mathrm{gp}(G)$$
gp
(
G
)
of a connected graph G is the cardinality of a largest set S of vertices such that no three distinct vertices from S lie on a common geodesic; such sets are refereed to as gp-sets of G. The general position number of cylinders $$P_r\,\square \,C_s$$
P
r
□
C
s
is deduced. It is proved that $$\mathrm{gp}(C_r\,\square \,C_s)\in \{6,7\}$$
gp
(
C
r
□
C
s
)
∈
{
6
,
7
}
whenever $$r\ge s \ge 3$$
r
≥
s
≥
3
, $$s\ne 4$$
s
≠
4
, and $$r\ge 6$$
r
≥
6
. A probabilistic lower bound on the general position number of Cartesian graph powers is achieved. Along the way a formula for the number of gp-sets in $$P_r\,\square \,P_s$$
P
r
□
P
s
, where $$r,s\ge 2$$
r
,
s
≥
2
, is also determined.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Javna Agencija za Raziskovalno Dejavnost RS
Ministerio de Educación, Cultura y Deporte
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference26 articles.
1. Anand, B.S., Ullas Chandran, S.V., Changat, M., Klavžar, S., Thomas, E.J.: Characterization of general position sets and its applications to cographs and bipartite graphs. Appl. Math. Comput. 359, 84–89 (2019)
2. Bukh, B., Matoušek, J.: Erdős–Szekeres-type statements: Ramsey function and decidability in dimension $$1$$. Duke Math. J. 163, 2243–2270 (2014)
3. Cardinal, J., Toth, C.D., Wood, D.R.: General position subsets and independent hyperplanes in $$d$$-space. J. Geometry 108, 33–43 (2017)
4. Cohen, G.D., Schaathun, H.G.: Asymptotic overview on separating codes, Tech. Report 248, Department of Informatics, University of Bergen, Bergen, Norway (2003)
5. Dudeney, H.E.: Amusements in Mathematics. Nelson, Edinburgh (1917)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献