Markov and Division Inequalities on Algebraic Sets

Author:

Bialas-Ciez LeokadiaORCID,Calvi Jean-Paul,Kowalska Agnieszka

Abstract

AbstractA compact set $$E\subset \mathbb {C}^N$$ E C N satisfies the Markov inequality if the supremum norm on E of the gradient of a polynomial p can be estimated from above by the norm of p multiplied by a constant polynomially depending on the degree of p. This inequality is strictly related to the Bernstein approximation theorem, Schur-type estimates and the extension property of smooth functions. Additionally, the Markov inequality can be applied to the construction of polynomial grids (norming sets or admissible meshes) useful in numerical analysis. We expect such an inequality with similar consequences not only on polynomially determining compacts but also on some nowhere dense sets. The primary goal of the paper is to extend the above definition of Markov inequality to the case of compact subsets of algebraic varieties in $$\mathbb {C}^N$$ C N . Moreover, we characterize compact sets satisfying such a Markov inequality on algebraic hypersurfaces as well as on certain varieties defined by several algebraic equations. We also prove a division inequality (a Schur-type inequality) on these sets. This opens up the possibility of establishing polynomial grids on algebraic sets. We also provide examples that complete and ilustrate the results.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3