Abstract
AbstractWe derive various eigenvalue estimates for the Hodge Laplacian acting on differential forms on weighted Riemannian manifolds. Our estimates unify and extend various results from the literature and provide a number of geometric applications. In particular, we derive an inequality which relates the eigenvalues of the Jacobi operator for f-minimal hypersurfaces and the spectrum of the Hodge Laplacian.
Funder
Austrian Science Fund
Alexander von Humboldt-Stiftung
University of Vienna
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Asada, S.: On the first eigenvalue of the Laplacian acting on $$p$$-forms. Hokkaido Math. J. 9(1), 112–122 (1980)
2. Ashbaugh, M.: Isoperimetric and universal inequalities for eigenvalues., Spectral theory and geometry (Edinburgh, 1998), London Math. Soc. Lecture Note Ser., 273, Cambridge Univ. Press, Cambridge, (1999)
3. Ashbaugh, M.S., Hermi, L.: On Harell-Stubbe type inequalities for the discrete spectrum of a self-adjoint operator, arXiv:0712.4396
4. Bakry, D., Emery, M.: Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, (1985)
5. Baldauf, J., Ozuch, T.: Spinors and mass on weighted manifolds. Commun. Math. Phys. 394, 1153–1172 (2022)