Abstract
AbstractThe k–generalized Fibonacci sequence $$\{F_n^{(k)}\}_{n\ge 2-k}$$
{
F
n
(
k
)
}
n
≥
2
-
k
is the linear recurrent sequence of order k whose first k terms are $$0, \ldots , 0, 1$$
0
,
…
,
0
,
1
and each term afterwards is the sum of the preceding k terms. The case $$k=2$$
k
=
2
corresponds to the well known Fibonacci sequence $$\{F_n\}_{n\ge 0}$$
{
F
n
}
n
≥
0
. In this paper we extend the study of the exponential Diophantine equation $$\left( F_{n+1}\right) ^x+\left( F_{n}\right) ^x-\left( F_{n-1}\right) ^x=F_{m}$$
F
n
+
1
x
+
F
n
x
-
F
n
-
1
x
=
F
m
with terms $$F_r^{(k)}$$
F
r
(
k
)
instead of $$F_r$$
F
r
, where $$r\in \{n+1,n,n-1,m\}$$
r
∈
{
n
+
1
,
n
,
n
-
1
,
m
}
.
Funder
University of the Witwatersrand
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Bednařík, D., Freitas, G., Marques, D., Trojovsý, P.: On the sum of squares of consecutive $$k-$$bonacci numbers which are $$l-$$bonacci numbers. Colloq. Math. 156, 153–164 (2019)
2. Bensella, H., Patel, B.K., Behloul, D.: On the Exponential Diophantine Equation $$(F_{m+1}^{(k)})^x - (F_{m-1}^{(k)})^x = F_n^{(k)}$$ (2022) arXiv:2205.13168v1
3. Bravo, J., Luca, F.: On a conjecture about repdigits in $$k$$-generalized Fibonacci sequences. Publ. Math. Debrecen 82, 623–639 (2013)
4. Bravo, J., Luca, F.: Powers of two in generalized Fibonacci sequences. Rev. Colomb. Mat. 46, 67–79 (2012)
5. Bravo, J.J., Gómez, C.A., Luca, F.: Powers of two as sums of two $$k-$$Fibonacci numbers. Miskolc Math. Notes 17(1), 85–100 (2016)