Bivariant Class of Degree One

Author:

Di Gennaro VincenzoORCID,Franco Davide,Sessa Carmine

Abstract

AbstractLet $$f:X\rightarrow Y$$ f : X Y be a projective birational morphism, between complex quasi-projective varieties. Fix a bivariant class $$\theta \in H^0(X{\mathop {\rightarrow }\limits ^{f}}Y)\cong Hom_{D^{b}_{c}(Y)}(Rf_*{\mathbb {A}}_X, {\mathbb {A}}_Y)$$ θ H 0 ( X f Y ) H o m D c b ( Y ) ( R f A X , A Y ) (here $${\mathbb {A}}$$ A is a Noetherian commutative ring with identity, and $${\mathbb {A}}_X$$ A X and $${\mathbb {A}}_Y$$ A Y denote the constant sheaves). Let $$\theta _0:H^0(X)\rightarrow H^0(Y)$$ θ 0 : H 0 ( X ) H 0 ( Y ) be the induced Gysin morphism. We say that $$\theta $$ θ has degree one if $$\theta _0(1_X)= 1_Y\in H^0(Y)$$ θ 0 ( 1 X ) = 1 Y H 0 ( Y ) . This is equivalent to say that $$\theta $$ θ is a section of the pull-back $$f^*: {\mathbb {A}}_Y\rightarrow Rf_*{\mathbb {A}}_X$$ f : A Y R f A X , i.e. $$\theta \circ f^*={\text {id}}_{{\mathbb {A}}_Y}$$ θ f = id A Y , and it is also equivalent to say that $${\mathbb {A}}_Y$$ A Y is a direct summand of $$Rf_*{\mathbb {A}}_X$$ R f A X . We investigate the consequences of the existence of a bivariant class of degree one. We prove explicit formulas relating the (co)homology of X and Y, which extend the classic formulas of the blowing-up. These formulas are compatible with the duality morphism. Using which, we prove that the existence of a bivariant class $$\theta $$ θ of degree one for a resolution of singularities, is equivalent to require that Y is an $${\mathbb {A}}$$ A -homology manifold. In this case $$\theta $$ θ is unique, and the Betti numbers of the singular locus $${\text {Sing}}(Y)$$ Sing ( Y ) of Y are related with the ones of $$f^{-1}({\text {Sing}}(Y))$$ f - 1 ( Sing ( Y ) ) .

Funder

Università degli Studi di Roma Tor Vergata

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Mathematics (miscellaneous)

Reference17 articles.

1. Baum, P., Fulton, W., MacPherson, R.: Riemann-Roch for singular varieties. Publ. Math. I.H.E.S. 45, 101–145 (1975)

2. Beilinson, A., Bernstein, J., Deligne, P. : Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, 100, Soc. Math. France, (Paris, 1982), pp. 5–171

3. Borho, W., MacPherson, R.: Partial Resolutions of Nilpotent Varieties. Astérisque 101–102, 23–74 (1982)

4. Brasselet, J.P., Schürmann, J., Yokura, S.: On the uniqueness of bivariant Chern class and bivariant Riemann-Roch transformations. Adv. Math. 210, 797–812 (2007)

5. de Cataldo, M.A., Migliorini, L.: The decomposition theorem, perverse sheaves and the topology of algebraic maps. Bull. Am. Math. Soc. 46(4), 535–633 (2009)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nilpotent Cone and Bivariant Theory;Results in Mathematics;2023-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3