Abstract
AbstractEach vector space that is endowed with a quadratic form determines its Clifford algebra. This algebra, in turn, contains a distinguished group, known as the Lipschitz group. We show that only a quotient of this group remains meaningful in the context of projective metric geometry. This quotient of the Lipschitz group can be viewed as a point set in the projective space on the Clifford algebra and, under certain restrictions, leads to an algebraic description of so-called kinematic mappings.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference54 articles.
1. Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3, 3–38 (1964)
2. Bachmann, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff, volume 96 of Die Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1973)
3. Bachmann, F.: Ebene Spiegelungsgeometrie. Bibliographisches Institut, Mannheim (1989)
4. Brady, N., McCammond, J.: Factoring Euclidean isometries. Int. J. Algebra Comput. 25, 325–347 (2015)
5. Bröcker, L.: Kinematische Räume. Geom. Dedicata 1, 241–268 (1973)