Abstract
AbstractWe study the properties of the mean-type mappings $$\textbf{M}:I^p \rightarrow I^p$$
M
:
I
p
→
I
p
of the form $$\begin{aligned} \textbf{M}(x_1,\dots ,x_p):=\big (M_1(x_{\alpha _{1,1}},\dots ,x_{\alpha _{1,d_1}}), \dots ,M_p(x_{\alpha _{p,1}},\dots ,x_{\alpha _{p,d_p}})\big ), \end{aligned}$$
M
(
x
1
,
⋯
,
x
p
)
:
=
(
M
1
(
x
α
1
,
1
,
⋯
,
x
α
1
,
d
1
)
,
⋯
,
M
p
(
x
α
p
,
1
,
⋯
,
x
α
p
,
d
p
)
)
,
where p and $$d_i$$
d
i
-s are positive integers, each $$M_i$$
M
i
is a $$d_i$$
d
i
-variable mean on an interval $$I \subset {\mathbb {R}}$$
I
⊂
R
, and $$\alpha _{i,j}$$
α
i
,
j
-s are elements from $$\{1,\dots ,p\}$$
{
1
,
⋯
,
p
}
. We show that, under some natural assumption on $$M_i$$
M
i
-s, the problem of existing the unique $$\textbf{M}$$
M
-invariant mean can be reduced to the ergodicity of the directed graph with vertexes $$\{1,\dots ,p\}$$
{
1
,
⋯
,
p
}
and edges $$\{(\alpha _{i,j},i) :i,j \text { admissible}\}$$
{
(
α
i
,
j
,
i
)
:
i
,
j
admissible
}
.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference29 articles.
1. Baják, Sz., Páles, Zs.: Computer aided solution of the invariance equation for two-variable Gini means. Comput. Math. Appl. 58, 334–340 (2009)
2. Baják, Sz., Páles, Zs.: Invariance equation for generalized quasi-arithmetic means. Aequ. Math. 77, 133–145 (2009)
3. Baják, Sz., Páles, Zs.: Computer aided solution of the invariance equation for two-variable Stolarsky means. Appl. Math. Comput. 216(11), 3219–3227 (2010)
4. Baják, Sz., Páles, Zs.: Solving invariance equations involving homogeneous means with the help of computer. Appl. Math. Comput. 219(11), 6297–6315 (2013)
5. Borwein, J.M., Borwein, P.B.: Pi and the AGM. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1987). A Study in Analytic Number Theory and Computational Complexity, A Wiley-Interscience Publication
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献