Abstract
AbstractIn this article we consider Selmer groups and fine Selmer groups of abelian varieties over a number field K. Following a classical approach of Monsky for Iwasawa modules from ideal class groups, we give sufficient conditions for the Iwasawa $$\mu $$
μ
-invariants of the fine Selmer groups and the $$\mu $$
μ
-invariants of the Selmer groups to be bounded as one runs over the $$\mathbb {Z}_p$$
Z
p
-extensions of K. Moreover, we describe a criterion for the boundedness of Iwasawa $$\lambda $$
λ
-invariants of Selmer groups and fine Selmer groups over multiple $$\mathbb {Z}_p$$
Z
p
-extensions which generalises a criterion of Monsky from dimension 2 to arbitrary dimension.
Funder
Universität der Bundeswehr München
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference32 articles.
1. Babaĭcev, V.A.: On the boundedness of Iwasawa’s $$\mu $$-invariant. Izv. Akad. Nauk SSSR Ser. Mat. 44(1), 3–23 (1980). (238)
2. Bosch, Siegfried: Algebra. Springer-Lehrb, 6th edn. Springer, Berlin (2006)
3. Brink, David: Prime decomposition in the anti-cyclotomic extension. Math. Comput. 76(260), 2127–2138 (2007)
4. Coates, J., Greenberg, R.: Kummer theory for abelian varieties over local fields. Invent. Math. 124(1–3), 129–174 (1996)
5. Cuoco, Albert A., Monsky, Paul: Class numbers in $${ Z}^{d}_{p}$$-extensions. Math. Ann. 255(2), 235–258 (1981)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献