Further results on a new class of functional equations satisfied by polynomial functions

Author:

Okeke Chisom PrinceORCID

Abstract

AbstractWhenever a numerical method produces accurate results, it creates an interesting functional equation, and because regularities is not assumed, unexpected solutions can emerge. Thus, this paper is mainly devoted to finding solutions to a generalized functional equation constructed in this spirit; namely, we solve the generalized form of the functional equation considered in Fechner and Gselmann (Publ Math Debrecen 80(1–2):143–154, 2012), then considered in Nadhomi et al. (Aequationes Math 95:1095–1117, 2021) and continued in Okeke and Sablik (Results Math 77:125, https://doi.org/10.1007/s00025-022-01664-x, 2022), that is we find the polynomial functions satisfying the following functional equation, $$\begin{aligned} \sum _{i=1}^n \gamma _i F(a_i x + b_i y)= \sum _{j=1}^m(\alpha _j x + \beta _j y) f(c_j x + d_j y), \end{aligned}$$ i = 1 n γ i F ( a i x + b i y ) = j = 1 m ( α j x + β j y ) f ( c j x + d j y ) , for every $$x,y\in \mathbb R$$ x , y R , $$\gamma _i,\alpha _j,\beta _j \in \mathbb R,$$ γ i , α j , β j R , and $$a_i,b_i,c_j,d_j \in \mathbb Q,$$ a i , b i , c j , d j Q , and its special forms. Thus we continue investigations presented in Nadhomi et al. (Aequationes Math 95:1095–1117, 2021) where we generalized the left hand side of Fechner–Gselmann equation and those from Okeke and Sablik (Results Math 77:125, https://doi.org/10.1007/s00025-022-01664-x, 2022) where the right hand side of the Fechner–Gselmann equation was studied. It turns out that under some assumptions on the parameters involved, the pair (Ff) solving Eq. (0.1) happens to be a pair of polynomial functions.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Mathematics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3