Abstract
AbstractIt is well known that the interpolation error for $$\left| x\right| ^{\alpha },\alpha >0$$
x
α
,
α
>
0
in $$L_{\infty }\left[ -1,1\right] $$
L
∞
-
1
,
1
by Lagrange interpolation polynomials based on the zeros of the Chebyshev polynomials of first kind can be represented in its limiting form by entire functions of exponential type. In this paper, we establish new asymptotic bounds for these quantities when $$\alpha $$
α
tends to infinity. Moreover, we present some explicit constructions for near best approximation polynomials to $$\left| x\right| ^{\alpha },\alpha >0$$
x
α
,
α
>
0
in the $$L_{\infty }$$
L
∞
norm which are based on the Chebyshev interpolation process. The resulting formulas possibly indicate a general approach towards the structure of the associated Bernstein constants.
Funder
Paris Lodron University of Salzburg
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference15 articles.
1. Bernstein, S.N.: Sur la meilleure approximation de $$\left|x\right|$$ par des polynômes des degrés donnés. Acta Math. 37, 1–57 (1913)
2. Bernstein, S.N.: Sur la meilleure approximation de $$\left|x\right|^{p}$$ par des polynômes des degrés trés élevés. Bull. Acad. Sci. USSR Sér. Math. 2, 181–190 (1938)
3. Ganzburg, M.I.: The Bernstein constant and polynomial interpolation at the Chebyshev nodes. J. Approx. Theory 119, 193–213 (2002)
4. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 5th edn. Academic Press, New York (1994)
5. Lubinsky, D.S.: On the Bernstein constants of polynomial approximation. Constr. Approx. 25(3), 303–366 (2007)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献