Author:
Łenski Włodzimierz,Szal Bogdan
Abstract
AbstractWe generalize and improve the results of A. Guven, D. Israfilov, Xh. Z. Krasniqi and T. N. Shakh-Emirov. We consider the general methods of summability of Fourier series of functions from $$L_{2\pi }^{p(x)}$$L2πp(x) with $$ p\left( x\right) \ge 1$$px≥1. For estimate of the error of approximation of functions by the matrix means we use a modulus of continuity constructed by the Steklov functions of the increments of considered functions without of absolute values.
Funder
University of Zielona Gora
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference11 articles.
1. Chandra, P.: Trigonometric approximation of functions in $$L_{p}$$ -norm. J. Math. Anal. Appl. 275, 13–26 (2002)
2. Guven, A.: Trigonometric approximation by matrix transformation in $$L^{p(x)}$$ spaces. Anal. Appl. (Singap.) 10(1), 47–65 (2012)
3. Guven, A., Israfilov, D.: Trigonometric approximation in generalized Lebesgue $$\text{ spaces }L^{p(x)}$$. J. Math. Inequal. 4(2), 285–299 (2010)
4. Krasniqi, X.Z.: Trigonometric approximation of (signals) functions by Nörlund type means in the variable space $$L^{p(x)}$$. Palest. J. Math. 6(1), 84–93 (2017)
5. Leindler, L.: Trigonometric approximation in $$L_{p}$$-norm. J. Math. Anal. Appl. 302(1), 129–136 (2005)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献