Plane Polynomials and Hamiltonian Vector Fields Determined by Their Singular Points

Author:

Arredondo John A.ORCID,Muciño-Raymundo JesúsORCID

Abstract

AbstractLet $$\Sigma (f)$$ Σ ( f ) be the singular points of a polynomial $$f \in \mathbb {K}[x,y]$$ f K [ x , y ] in the plane $$\mathbb {K}^2$$ K 2 , where $$\mathbb {K}$$ K is $$\mathbb {R}$$ R or $$\mathbb {C}$$ C . Our goal is to study the singular point map $$\mathfrak {S}_d$$ S d , it sends polynomials f of degree d to their singular points $$\Sigma (f)$$ Σ ( f ) . Very roughly speaking, a polynomial f is essentially determined when any other g sharing the singular points of f satisfies that $$f = \lambda g$$ f = λ g ; here both are polynomials of degree d, $$\lambda \in \mathbb {K}^* $$ λ K . In order to describe the degree d essentially determined polynomials, a computation of the required number of isolated singular points $$\delta (d)$$ δ ( d ) is provided. A dichotomy appears for the values of $$\delta (d)$$ δ ( d ) ; depending on a certain parity, the space of essentially determined polynomials is an open or closed Zariski set. We compute the map $$\mathfrak {S}_{3}$$ S 3 , describing under what conditions a configuration of 4 points leads to a degree 3 essentially determined polynomial. Furthermore, we describe explicitly configurations supporting degree 3 non essential determined polynomials. The quotient space of essentially determined polynomials of degree 3 up to the action of the affine group $$\hbox { Aff}\hspace{1.42271pt}(\mathbb {K}^2)$$ Aff ( K 2 ) determines a singular $$\mathbb {K}$$ K -analytic surface.

Funder

Konrad Lorenz

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3