Abstract
AbstractWe use the theory of calibrations to write an equation of a minimal volume vector field on a given Riemann surface.
Funder
Fundação Ciência e Tecnologia
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference14 articles.
1. Albuquerque, R.: Notes on the Sasaki metric. Expo. Math. 37(2), 207–224 (2019)
2. Albuquerque, R.: A fundamental differential system of Riemannian geometry. Rev. Mat. Iberoam. 35(7), 2221–2250 (2019)
3. Albuquerque, R.: Vector fields with big and small volume on $${\mathbb{S}}^2{\!},$$ to appear in Hiroshima Mathematical Journal 53(2), (2023)
4. Borrelli, V., Gil-Medrano, O.: Area-minimizing vector fields on round 2-spheres. J. Reine Angew. Math. 640, 85–99 (2010)
5. Brito, F., Chacón, P., Johnson, D.: Unit vector fields on antipodally punctured spheres: big index, big volume. Bull. Soc. Math. France 136(1), 147–157 (2008)