Parabolicity on Graphs

Author:

Martínez-Pérez ÁlvaroORCID,Rodríguez José M.

Abstract

AbstractLarge scale properties of Riemannian manifolds, in particular, those properties preserved by quasi-isometries, can be studied using discrete structures which approximate the manifolds. In a sequence of papers, M. Kanai proved that, under mild conditions, many properties are preserved by a certain (quasi-isometric) graph approximation of a manifold. One of these properties is p-parabolicity. A manifold M (respectively, a graph G) is said to be p-parabolic if all positive p-superharmonic functions on M (resp. G) are constant. This is equivalent to not having p-Green’s function (i.e. a positive fundamental solution of the p-Laplace-Beltrami operator). Herein we study directly the p-parabolicity on graphs. We obtain some characterizations in terms of graph decompositions. Also, we give necessary and sufficient conditions for a uniform hyperbolic graph to be p-parabolic in terms of its boundary at infinity. Finally, we prove that if a uniform hyperbolic graph satisfies the (Cheeger) isoperimetric inequality, then it is non-p-parabolic for every $$1<p<\infty $$ 1 < p < .

Funder

Agencia Estatal de Investigación

Comunidad de Madrid

Publisher

Springer Science and Business Media LLC

Reference56 articles.

1. Alonso, J., Brady, T., Cooper, D., Delzant, T., Ferlini, V., Lustig, M., Mihalik, M., Shapiro, M., Short, H.: Notes on word hyperbolic groups. In: Ghys, E., Haefliger, A., Verjovsky, A. (eds.) Group Theory from a Geometrical Viewpoint. World Scientific, Singapore (1992)

2. Alvarez, V., Pestana, D., Rodríguez, J.M.: Isoperimetric inequalities in Riemann surfaces of infinite type. Rev. Mat. Iberoamericana 15, 353–427 (1999)

3. Alvarez, V., Rodríguez, J.M., Yakubovich, V.A.: Subadditivity of p-harmonic measure on graphs. Michigan Math. J. 49, 47–64 (2001)

4. Benjamini, I., Schramm, O.: Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant. Geom. Funct. Anal. 7, 403–419 (1997). https://doi.org/10.1007/PL00001625

5. Bermudo, S., Rodríguez, J.M., Sigarreta, J.M.: Computing the hyperbolicity constant. Comput. Math. Appl. 62, 4592–4595 (2011)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3