Abstract
AbstractFor fixed sequences$$u = (u_i)_{i\in {{\mathbb {N}}}}, \varphi =(\varphi _i)_{i\in {{\mathbb {N}}}}$$u=(ui)i∈N,φ=(φi)i∈N, we consider the weighted composition operator$$W_{u,\varphi }$$Wu,φwith symbols$$u, \varphi $$u,φdefined by$$x=(x_i)_{i\in {{\mathbb {N}}}}\mapsto u(x\circ \varphi )= (u_ix_{\varphi _i})_{i\in {{\mathbb {N}}}}$$x=(xi)i∈N↦u(x∘φ)=(uixφi)i∈N. We characterize the continuity and the compactness of the operator$$W_{u,\varphi }$$Wu,φwhen it acts on the weighted Banach spaces$$l^p(v)$$lp(v),$$1\le p\le \infty $$1≤p≤∞, and$$c_0(v)$$c0(v), with$$v=(v_i)_{i\in {{\mathbb {N}}}}$$v=(vi)i∈Na weight sequence on$${{\mathbb {N}}}$$N. We extend these results to the case in which the operator$$W_{u,\varphi }$$Wu,φacts on sequence (LF)-spaces of type$$l_p(\mathcal {V})$$lp(V)and on sequence (PLB)-spaces of type$$a_p(\mathcal {V})$$ap(V), with$$p\in [1,\infty ] \cup \{0\}$$p∈[1,∞]∪{0}and$$\mathcal {V}$$Va system of weights on$${{\mathbb {N}}}$$N. We also characterize other topological properties of$$W_{u,\varphi }$$Wu,φacting on$$l_p(\mathcal {V})$$lp(V)and on$$a_p(\mathcal {V})$$ap(V), such as boundedness, reflexivity and to being Montel.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference42 articles.
1. Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)
2. Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)
3. Albanese, A.A., Bonet, J., Ricker, W.J.: Characterizing Fréchet-Schwartz spaces via power bounded operators. Stud. Math. 224, 25–45 (2014)
4. Albanese, A.A., Bonet, J., Ricker, W.J.: Uniform convergence and spectra of operators in a class of Fréchet spaces. In: Abstract and Applied Analysis, vol. 2014, p. 179027
5. Albanese, A.A., Jordá, E., Mele, C.: Dynamics of composition operators on function spaces defined by local and global properties. J. Math. Anal. Appl. 514, 126303 (2022)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献