Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference34 articles.
1. Gasper, G., Rahman, M.: Basic Hypergeometric Series, Second Edition, Encyclopedia of Mathematics and Its Applications 96. Cambridge University Press, Cambridge (2004)
2. Gorodetsky, O.: $$q$$-Congruences, with applications to supercongruences and the cyclic sieving phenomenon. Int. J. Number Theory (2019)
https://doi.org/10.1142/S1793042119501069
3. Guillera, J.: WZ pairs and $$q$$-analogues of Ramanujan series for $$1/\pi $$. J. Differ. Equ. Appl. 24, 1871–1879 (2018)
4. Guo, V.J.W.: Some generalizations of a supercongruence of van Hamme. Integral Transforms Spec. Funct. 28, 888–899 (2017)
5. Guo, V.J.W.: A $$q$$-analogue of a Ramanujan-type supercongruence involving central binomial coefficients. J. Math. Anal. Appl. 458, 590–600 (2018)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Some q-supercongruences from squares of basic hypergeometric series;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-12-08
2. -tuple sum analogues for Ramanujan-type congruences;Proceedings of the American Mathematical Society;2022-07-15
3. Some q-supercongruences from the Bailey transformation;Periodica Mathematica Hungarica;2022-01-03
4. q-analogues of the (G.2) supercongruence of Van Hamme;Rocky Mountain Journal of Mathematics;2021-08-01
5. Polynomial reduction and supercongruences;Journal of Symbolic Computation;2021-03