Projections and Angle Sums of Belt Polytopes and Permutohedra

Author:

Godland Thomas,Kabluchko ZakharORCID

Abstract

AbstractLet $$P\subset \mathbb {R}^n$$ P R n be a belt polytope, that is a polytope whose normal fan coincides with the fan of some hyperplane arrangement $${\mathcal {A}}$$ A . Also, let $$G:\mathbb {R}^n\rightarrow \mathbb {R}^d$$ G : R n R d be a linear map of full rank whose kernel is in general position with respect to the faces of P. We derive a formula for the number of j-faces of the “projected” polytope GP in terms of the j-th level characteristic polynomial of $${\mathcal {A}}$$ A . In particular, we show that the face numbers of GP do not depend on the linear map G provided a general position assumption is satisfied. Furthermore, we derive formulas for the sum of the conic intrinsic volumes and Grassmann angles of the tangent cones of P at all of its j-faces. We apply these results to permutohedra of types A and B, which yields closed formulas for the face numbers of projected permutohedra and the generalized angle sums of permutohedra in terms of Stirling numbers of both kinds and their B-analogues.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3