Author:
Fiorenza Alberto,Formica Maria Rosaria
Abstract
AbstractWe prove that if $$1<p<\infty $$
1
<
p
<
∞
and $$\delta :]0,p-1]\rightarrow ]0,\infty [$$
δ
:
]
0
,
p
-
1
]
→
]
0
,
∞
[
is continuous, nondecreasing, and satisfies the $$\Delta _2$$
Δ
2
condition near the origin, then This result permits to clarify the assumptions on the increasing function against the Lebesgue norm in the definition of generalized grand Lebesgue spaces and to sharpen and simplify the statements of some known results concerning these spaces.
Funder
Università Parthenope di Napoli
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference21 articles.
1. Ahmed, I., Fiorenza, A., Formica, M.R., Gogatishvili, A., Rakotoson, J.M.: Some new results related to Lorentz G$$\Gamma $$-spaces and interpolation. J. Math. Anal. Appl. 483, 123623 (2020). https://doi.org/10.1016/j.jmaa.2019.123623
2. Anatriello, G., Fiorenza, A.: Fully measurable grand Lebesgue spaces. J. Math. Anal. Appl. 422, 783–797 (2015)
3. Anatriello, G., Formica, M.R., Giova, R.: Fully measurable small Lebesgue spaces. J. Math. Anal. Appl. 447(1), 550–563 (2017)
4. Bennett, C., Sharpley, R.: Interpolation of Operators, Pure and Applied Mathematics, vol. 129. Academic Press Inc, Boston, MA (1988)
5. Capone, C., Fiorenza, A.: On small Lebesgue spaces. J. Funct. Spaces Appl. 3(1), 73–89 (2005)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献