The Growth Order of the Optimal Constants in Turán-Erőd Type Inequalities in $$L^q(K,\mu )$$

Author:

Glazyrina Polina Yu.,Goryacheva Yuliya S.,Révész Szilárd Gy.ORCID

Abstract

AbstractIn 1939 Turán raised the question about lower estimations of the maximum norm of the derivatives of a polynomial p of maximum norm 1 on the compact set K of the complex plain under the normalization condition that the zeroes of p in question all lie in K. Turán studied the problem for the interval I and the unit disk D and found that with $$n:= \deg p$$ n : = deg p tending to infinity, the precise growth order of the minimal possible derivative norm (oscillation order) is $$\sqrt{n}$$ n for I and n for D. Erőd continued the work of Turán considering other domains. Finally, in 2006, Halász and Révész proved that the growth of the minimal possible maximal norm of the derivative is of order n for all compact convex domains. Although Turán himself gave comments about the above oscillation question in $$L^q$$ L q norms, till recently results were known only for D and I. Recently, we have found order n lower estimations for several general classes of compact convex domains, and proved that in $$L^q$$ L q norm the oscillation order is at least $$n/\log n$$ n / log n for all compact convex domains. In the present paper we prove that the oscillation order is not greater than n for all compact (not necessarily convex) domains K and $$L^q$$ L q norm with respect to any measure supported on more than two points on K.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Ministry of Science and Higher Education of the Russian Federation

Publisher

Springer Science and Business Media LLC

Reference23 articles.

1. Turán, P.: Über die Ableitung von Polynomen. Compos. Math. 7, 89–95 (1939)

2. Erőd, J.: Bizonyos polinomok maximumának alsó korlátjáról. Mat. Fiz. Lapok. 46, 58–82 (1939). English translation: On the lower bound of the maximum of certain polynomials, East J. Approx. 12(4), 477–501 (2006)

3. Levenberg, N., Poletsky, E.: Reverse Markov inequalities. Ann. Acad. Fenn. 27, 173–182 (2002)

4. Révész, Sz.Gy.: Turán type reverse Markov inequalities for compact convex sets. J. Approx. Theory 141, 162–173 (2006)

5. Glazyrina, P.Yu., Révész, Sz.Gy.: Turán type oscillation inequalities in norm on the boundary of convex domains. Math. Ineq. Appl. 20(1), 149–180 (2017)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3