Abstract
AbstractIn this work we show that if the frame property of a Gabor frame with window in Feichtinger’s algebra and a fixed lattice only depends on the parity of the window, then the lattice can be replaced by any other lattice of the same density without losing the frame property. As a byproduct we derive a generalization of a result of Lyubarskii and Nes, who could show that any Gabor system consisting of an odd window function from Feichtinger’s algebra and any separable lattice of density $$\tfrac{n+1}{n}$$n+1n, $$n \in \mathbb {N}_+$$n∈N+, cannot be a Gabor frame for the Hilbert space of square-integrable functions on the real line. We extend this result by removing the assumption that the lattice has to be separable. This is achieved by exploiting the interplay between the symplectic and the metaplectic group.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Gabor frame bound optimizations;Applied and Computational Harmonic Analysis;2023-11