Quasi-nilpotency of Generalized Volterra Operators on Sequence Spaces

Author:

Chalmoukis N.ORCID,Stylogiannis G.

Abstract

AbstractWe study the quasi-nilpotency of generalized Volterra operators on spaces of power series with Taylor coefficients in weighted $$\ell ^p$$ p spaces $$1<p<+\infty $$ 1 < p < + . Our main result is that when an analytic symbol g is a multiplier for a weighted $$\ell ^p$$ p space, then the corresponding generalized Volterra operator $$T_g$$ T g is bounded on the same space and quasi-nilpotent, i.e. its spectrum is $$\{0\}.$$ { 0 } . This improves a previous result of A. Limani and B. Malman in the case of sequence spaces. Also combined with known results about multipliers of $$\ell ^p$$ p spaces we give non trivial examples of bounded quasi-nilpotent generalized Volterra operators on $$\ell ^p$$ p . We approach the problem by introducing what we call Schur multipliers for lower triangular matrices and we construct a family of Schur multipliers for lower triangular matrices on $$\ell ^p, 1<p<\infty $$ p , 1 < p < related to summability kernels. To demonstrate the power of our results we also find a new class of Schur multipliers for Hankel operators on $$\ell ^2 $$ 2 , extending a result of E. Ricard.

Funder

Alma Mater Studiorum - Università di Bologna

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3