Abstract
AbstractThis paper deals with the approximation of functions by the classical Bernstein polynomials in terms of the Ditzian–Totik modulus of smoothness. Asymptotic and non-asymptotic results are respectively stated for continuous and twice continuously differentiable functions. By using a probabilistic approach, known results are either completed or strengthened.
Funder
Ministerio de Ciencia, Innovación y Universidades
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference9 articles.
1. Adell, J.A., Sangüesa, C.: Upper estimates in direct inequalities for Bernstein-type operators. J. Approx. Theory 109, 229–241 (2001)
2. Bustamante, J.: Estimates of positive linear operators in terms of second-order moduli. J. Math. Anal. Appl. 345, 203–212 (2008)
3. Bustamante, J., Quesada, J.M.: A property of Ditzian–Totik second order moduli. Appl. Math. Lett. 23, 576–580 (2010)
4. Ditzian, Z., Ivanov, K.G.: Strong converse inequalities. J. Anal. Math. 61, 61–111 (1993)
5. Gavrea, I., Gonska, H.H., Păltănea, R., Tachev, G.: General estimates for the Ditzian–Totik modulus. East J. Approx. 9(2), 175–194 (2003)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Semi-exponential operators connected to $ x^3 $. A probabilistic perspective;Mathematical Foundations of Computing;2024
2. Estimates in direct inequalities for the Szász–Mirakyan operator;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2022-12-16