Abstract
AbstractWe show that each infinite-dimensional reflexive Banach space $$(X,\left\| \cdot \right\| _X)$$
(
X
,
·
X
)
has an equivalent norm $$\left\| \cdot \right\| _{X,0}$$
·
X
,
0
such that $$(X,\left\| \cdot \right\| _{X,0})$$
(
X
,
·
X
,
0
)
is LUR and contains a diametrically complete set with empty interior. We also prove that after a suitable equivalent renorming, the Banach space $$C([0,1],{\mathbb {R}})$$
C
(
[
0
,
1
]
,
R
)
contains a constant width set with empty interior.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Mathematics (miscellaneous)
Reference54 articles.
1. Albiac, F., Kalton, N.J.: Topics in Banach Space. Theory With a Foreword by Gilles Godefory, Graduate Texts in Mathematics, vol. 233, 2nd edn. Springer, Berlin (2016)
2. Argyros, S.A., Motakis, P.: The scalar-plus-compact property in spaces without reflexive subspaces. Trans. Am. Math. Soc. 371, 1887–1924 (2019)
3. Banach, S.:Théorie des opérations linéaries, Warszawa (1932)
4. Bessaga, C., Pełczyński, A.: On bases and unconditional convergence of series in Banach spaces. Studia Math. 17, 151–164 (1958)
5. Brodskii, M.S., Mil’man, D.P.: On the center of a convex set. Doklady Akad. Nauk SSSR (NS) 59, 837–840 (1948)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Complete sets in normed linear spaces;Banach Journal of Mathematical Analysis;2023-05-10