1. Agogino, A., & Tumer, K. (2004). Efficient evaluation functions for multi-rover systems. Genetic and evolutionary computation conference (pp. 1–11). Seattle, WA: Springer.
2. Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity of decentralized control of Markov decision processes. Mathematics of Operations Research, 27(4), 819–840.
3. Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, And Cybernetics-Part C: Applications and Reviews, 8(2), 156–172.
4. Castellini, J., Oliehoek, F. A., Savani, R., & Whiteson, S. (2019). The representational capacity of action-value networks for multi-agent reinforcement learning. In Proceedings of the 18th international conference on autonomous agents and multiagent systems (pp. 1862–1864).
5. Chung, J.J., Chow, S., & Tumer, K. (2018). When less is more: Reducing agent noise with probabilistically learning agents. In Proceedings of the 17th international conference on autonomous agents and multiagent systems, International foundation for autonomous agents and multiagent systems, Stockholm, Sweden. Extended abstract (pp. 1900–1902).