Publisher
Springer Science and Business Media LLC
Reference194 articles.
1. Abels, A., Roijers, D. M., Lenaerts, T., Nowé, A., & Steckelmacher, D. (2019). Dynamic weights in multi-objective deep reinforcement learning. In ICML 2019: Proceedings of the 36th international conference on machine learning (pp. 11–20).
2. Ahmad, I., Ranka, S., & Khan, S. U. (2008). Using game theory for scheduling tasks on multi-core processors for simultaneous optimization of performance and energy. In 2008 IEEE international symposium on parallel and distributed processing (pp. 1–6). IEEE.
3. Albrecht, S. V., & Stone, P. (2018). Autonomous agents modelling other agents: A comprehensive survey and open problems. Artificial Intelligence, 258, 66–95.
4. Aleksandrov, M., & Walsh, T. (2017). Pure nash equilibria in online fair division. In Proceedings of the twenty-sixth international joint conference on artificial intelligence, IJCAI-17 (pp. 42–48). https://doi.org/10.24963/ijcai.2017/7.
5. Alonso, E., D’inverno, M., Kudenko, D., Luck, M., & Noble, J. (2001). Learning in multi-agent systems. The Knowledge Engineering Review, 16(3), 277–284.
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献