1. AL-Malaise, A., Malibari, A., & Alkhozae, M. (2014). Students’ performance prediction system using multi agent data mining technique. International Journal of Data Mining & Knowledge Management Process., 4(5), 1–20.
2. Amanatidis, G., Barrot, N., Lang, J., Markakis, E., & Ries, B. (2015). Multiple referenda and multiwinner elections using hamming distances: Complexity and manipulability. In Proceedings of the 14th international conference on autonomous agents and multiagent systems, AAMAS (pp. 715–723).
3. Aziz, H., Gaspers, S., Gudmundsson, J., Mackenzie, S., Mattei, N., & Walsh, T. (2015). Computational aspects of multi-winner approval voting. In Proceedings of the 14th international conference on autonomous agents and multiagent systems, AAMAS (pp. 107–115).
4. Bachrach, Y., Graepel, T., Kasneci, G., Kosinski, M., & Van Gael, J. (2012). Crowd IQ: Aggregating opinions to boost performance. In Proceedings of the 11th international conference on autonomous agents and multiagent systems, AAMAS (pp. 535–542).
5. Bakkes, S., Spronck, P., & van den Herik, J. (2009). Opponent modelling for case-based adaptive game AI. Entertainment Computing, 1(1), 27–37.