1. Balduzzi, D., Garnelo, M., Bachrach, Y., Czarnecki, W., Perolat, J., Jaderberg, M., Graepel, T. (2019). Open-ended learning in symmetric zero-sum games. In: International Conference on Machine Learning, pp. 434–443. PMLR.
2. Beattie, C., Köppe, T., Duéñez-Guzmán, E.A., Leibo, J.Z. (2020). DeepMind Lab2D. arXiv preprint arXiv:2011.07027.
3. Carroll, M., Shah, R., Ho, M.K., Griffiths, T., Seshia, S., Abbeel, P., Dragan, A. (2019). On the utility of learning about humans for human-AI coordination. In: Advances in Neural Information Processing Systems, pp. 5175–5186.
4. Charakorn, R., Manoonpong, P., Dilokthanakul, N. (2020). Investigating partner diversification methods in cooperative multi-agent deep reinforcement learning. In: International Conference on Neural Information Processing, pp. 395–402. Springer.
5. Cobbe, K., Hesse, C., Hilton, J., Schulman, J. (2019). Leveraging procedural generation to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588.