Towards explainable interactive multiobjective optimization: R-XIMO

Author:

Misitano GiovanniORCID,Afsar Bekir,Lárraga Giomara,Miettinen Kaisa

Abstract

AbstractIn interactive multiobjective optimization methods, the preferences of a decision maker are incorporated in a solution process to find solutions of interest for problems with multiple conflicting objectives. Since multiple solutions exist for these problems with various trade-offs, preferences are crucial to identify the best solution(s). However, it is not necessarily clear to the decision maker how the preferences lead to particular solutions and, by introducing explanations to interactive multiobjective optimization methods, we promote a novel paradigm of explainable interactive multiobjective optimization. As a proof of concept, we introduce a new method, R-XIMO, which provides explanations to a decision maker for reference point based interactive methods. We utilize concepts of explainable artificial intelligence and SHAP (Shapley Additive exPlanations) values. R-XIMO allows the decision maker to learn about the trade-offs in the underlying problem and promotes confidence in the solutions found. In particular, R-XIMO supports the decision maker in expressing new preferences that help them improve a desired objective by suggesting another objective to be impaired. This kind of support has been lacking. We validate R-XIMO numerically, with an illustrative example, and with a case study demonstrating how R-XIMO can support a real decision maker. Our results show that R-XIMO successfully generates sound explanations. Thus, incorporating explainability in interactive methods appears to be a very promising and exciting new research area.

Funder

Academy of Finland

Vilho, Yrjö and Kalle Väisälä Foundation

University of Jyväskylä

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3