Real-time multi-agent systems: rationality, formal model, and empirical results

Author:

Calvaresi DavideORCID,Dicente Cid YashinORCID,Marinoni MauroORCID,Dragoni Aldo FrancoORCID,Najjar AmroORCID,Schumacher MichaelORCID

Abstract

AbstractSince its dawn as a discipline, Artificial Intelligence (AI) has focused on mimicking the human mental processes. As AI applications matured, the interest for employing them into real-world complex systems (i.e., coupling AI with Cyber-Physical Systems—CPS) kept increasing. In the last decades, the multi-agent systems (MAS) paradigm has been among the most relevant approaches fostering the development of intelligent systems. In numerous scenarios, MAS boosted distributed autonomous reasoning and behaviors. However, many real-world applications (e.g., CPS) demand the respect of strict timing constraints. Unfortunately, current AI/MAS theories and applications onlyreason“about time” and are incapable ofacting“in time” guaranteeing any timing predictability. This paper analyzes the MAS compliance with strict timing constraints (real-time compliance)—crucial for safety-critical applications such as healthcare, industry 4.0, and automotive. Moreover, it elicits the main reasons for the lack of real-time satisfiability in MAS (originated from current theories, standards, and implementations). In particular, traditional internal agent schedulers (general-purpose-like), communication middlewares, and negotiation protocols have been identified as co-factors inhibiting real-time compliance. To pave the road towards reliable and predictable MAS, this paper postulates a formal definition and mathematical model of real-time multi-agent systems (RT-MAS). Furthermore, this paper presents the results obtained by testing the dynamics characterizing the RT-MAS model within the simulator MAXIM-GPRT. Thus, it has been possible to analyze the deadline miss ratio between the algorithms employed in the most popular frameworks and the proposed ones. Finally, discussing the obtained results, the ongoing and future steps are outlined.

Funder

Haute Ecole Specialisée de Suisse occidentale

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3