Production planning under RTP, TOU and PPA considering a redox flow battery storage system

Author:

Hilbert MarkusORCID,Dellnitz Andreas,Kleine Andreas

Abstract

AbstractDue to climate change and the increasing scarcity of resources, the sustainability performance of companies is increasingly becoming the focus of science and practice. Consequently, bicriteria energy-efficient production planning under price-dynamic electricity tariffs—e.g., real-time-pricing (RTP) or time-of-use (TOU)—is meanwhile well established, often fathoming the tradeoffs between electricity costs of production and another criterion such as makespan. However, tradeoffs between electricity costs and electricity consumption in general are rarely the focus of such analyses. So-called green power purchase agreements (PPAs), which are becoming increasingly popular in the European business community as a means of improving corporate sustainability performance, are also largely ignored. Thus, for the first time in the scientific literature, we put this type of electricity tariff to the test by analyzing the tradeoffs between electricity costs and electricity consumption in a lot-sizing and scheduling context. Here, we additionally consider a real-world redox flow battery storage system that may be the system of the future, which is also new to the literature on lot-sizing and scheduling. Even more: due to the complex nature of our bicriteria mixed-integer problem, we develop and present suitable heuristics. These include an energy-efficient allocation heuristic in the case of PPA and, among others, a fix-relax-and-optimize heuristic combined with a decomposition approach in the case of RTP and TOU. Ultimately, a scenario analysis demonstrates the performance of these heuristics.

Funder

FernUniversität in Hagen

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Decision Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3