A mathematical model for managing the multi-dimensional impacts of the COVID-19 pandemic in supply chain of a high-demand item

Author:

Paul Sanjoy Kumar,Chowdhury Priyabrata,Chakrabortty Ripon Kumar,Ivanov DmitryORCID,Sallam Karam

Abstract

AbstractThe COVID-19 pandemic has wreaked havoc across supply chain (SC) operations worldwide. Specifically, decisions on the recovery planning are subject to multi-dimensional uncertainty stemming from singular and correlated disruptions in demand, supply, and production capacities. This is a new and understudied research area. In this study, we examine, SC recovery for high-demand items (e.g., hand sanitizer and face masks). We first developed a stochastic mathematical model to optimise recovery for a three-stage SC exposed to the multi-dimensional impacts of COVID-19 pandemic. This allows to generalize a novel problem setting with simultaneous demand, supply, and capacity uncertainty in a multi-stage SC recovery context. We then developed a chance-constrained programming approach and present in this article a new and enhanced multi-operator differential evolution variant-based solution approach to solve our model. With the optimisation, we sought to understand the impact of different recovery strategies on SC profitability as well as identify optimal recovery plans. Through extensive numerical experiments, we demonstrated capability towards efficiently solving both small- and large-scale SC recovery problems. We tested, evaluated, and analyzed different recovery strategies, scenarios, and problem scales to validate our approach. Ultimately, the study provides a useful tool to optimise reactive adaptation strategies related to how and when SC recovery operations should be deployed during a pandemic. This study contributes to literature through development of a unique problem setting with multi-dimensional uncertainty impacts for SC recovery, as well as an efficient solution approach for solution of both small- and large-scale SC recovery problems. Relevant decision-makers can use the findings of this research to select the most efficient SC recovery plan under pandemic conditions and to determine the timing of its deployment.

Funder

Hochschule für Wirtschaft und Recht Berlin

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Decision Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3