Multivariate systemic optimal risk transfer equilibrium

Author:

Doldi AlessandroORCID,Frittelli MarcoORCID

Abstract

AbstractA Systemic Optimal Risk Transfer Equilibrium (SORTE) was introduced in: “Systemic optimal risk transfer equilibrium”, Mathematics and Financial Economics (2021), for the analysis of the equilibrium among financial institutions or in insurance-reinsurance markets. A SORTE conjugates the classical Bühlmann’s notion of a risk exchange equilibrium with a capital allocation principle based on systemic expected utility optimization. In this paper we extend such a notion to the case when the value function to be optimized is multivariate in a general sense, and it is not simply given by the sum of univariate utility functions. This takes into account the fact that preferences of single agents might depend on the actions of other participants in the game. Technically, the extension of SORTE to the new setup requires developing a theory for multivariate utility functions and selecting at the same time a suitable framework for the duality theory. Conceptually, this more general framework allows us to introduce and study a Nash Equilibrium property of the optimizer. We prove existence, uniqueness, and the Nash Equilibrium property of the newly defined Multivariate Systemic Optimal Risk Transfer Equilibrium.

Funder

Università degli Studi di Milano

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Decision Sciences

Reference43 articles.

1. Acciaio, B. (2007). Optimal risk sharing with non-monotone monetary functionals. Finance and Stochastics, 11(2), 267–289.

2. Aliprantis, C. D., & Border, K. C. (2006). Infinite dimensional analysis (3rd ed.). Berlin: Springer.

3. Armenti, Y., Crépey, S., Drapeau, S., & Papapantoleon, A. (2018). Multivariate shortfall risk allocation and systemic risk. SIAM Journal on Financial Mathematics, 9(1), 90–126.

4. Barrieu, P., & El Karoui, N. (2005). Inf-convolution of risk measures and optimal risk transfer. Finance and Stochastics, 9(2), 269–298.

5. Barrieu, P., & Karoui, N. E. (2005). Pricing, hedging and optimally designing derivatives via minimization of risk measures. In Volume on indifference pricing (pp. 144–172). Princeton University Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Short Communication: Are Shortfall Systemic Risk Measures One Dimensional?;SIAM Journal on Financial Mathematics;2024-01-04

2. Optimal multivariate financial decision making;European Journal of Operational Research;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3