The role of agricultural biomass in supply chain decarbonization

Author:

Lyu Ruxia,Arisian SobhanORCID,Li Zhitang,Taskhiri Mohammad Sadegh,Mavi Reza Kiani

Abstract

AbstractTo achieve supply chain decarbonization, environmentally conscious manufacturers are transforming their energy infrastructure. While certain manufacturers are adopting a pure bioenergy strategy in their production processes, others are opting for a hybrid energy approach that combines traditional energy with bioenergy. This choice is often influenced by limitations in land capacity and the developmental stage of biomass conversion technologies. This paper introduces a game-theoretic model that explores the optimal approach to achieving supply chain decarbonization by strategically selecting energy portfolios. Our findings reveal that in scenarios where the market size is small, manufacturers tend to adopt a hybrid energy strategy, particularly when the average yield of biomass is low. However, as the biomass yield increases, manufacturers lean towards a hybrid (or pure) bioenergy strategy in smaller (or larger) markets. In larger markets, the manufacturer’s energy strategies become more complex and are influenced by various factors. Our results emphasize that farmers should base their planting decisions on considerations such as available land, initial investment, and agricultural biomass yield. This paper urges manufacturers to effectively navigate the complexities of the carbon tax policy and make informed decisions that promote a sustainable energy strategy. By utilizing technological advancements, governments and manufacturers can collect and analyze data on factors such as market size, biomass yield, and carbon tax policy, ultimately working towards a more efficient, productive, and environmentally sustainable future.

Funder

La Trobe University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3