Investigating a citrus fruit supply chain network considering CO2 emissions using meta-heuristic algorithms

Author:

Goodarzian Fariba,Kumar VikasORCID,Ghasemi Peiman

Abstract

AbstractAccording to the increasing carbon dioxide released through vehicles and the shortage of water resources, decision-makers decided to combine the environmental and economic effects in the Agri-Food Supply Chain Network (AFSCN) in developing countries. This paper focuses on the citrus fruit supply chain network. The novelty of this study is the proposal of a mathematical model for a three-echelon AFSCN considering simultaneously CO2 emissions, coefficient water, and time window. Additionally, a bi-objective mixed-integer non-linear programming is formulated for production–distribution-inventory-allocation problem. The model seeks to minimise the total cost and CO+ emission simultaneously. To solve the multi-objective model in this paper, the Augmented Epsilon-constraint method is utilised for small- and medium-sized problems. The Augmented Epsilon-constraint method is not able to solve large-scale problems due to its high computational time. This method is a well-known approach to dealing with multi-objective problems. It allows for producing a set of Pareto solutions for multi-objective problems. Multi-Objective Ant Colony Optimisation, fast Pareto genetic algorithm, non-dominated sorting genetic algorithm II, and multi-objective simulated annealing are used to solve the model. Then, a hybrid meta-heuristic algorithm called Hybrid multi-objective Ant Colony Optimisation with multi-objective Simulated Annealing (HACO-SA) is developed to solve the model. In the HACO-SA algorithm, an initial temperature and temperature reduction rate is utilised to ensure a faster convergence rate and to optimise the ability of exploitation and exploration as input data of the SA algorithm. The computational results show the superiority of the Augmented Epsilon-constraint method in small-sized problems, while HACO-SA indicates that is better than the suggested original algorithms in the medium- and large-sized problems.

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Decision Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3