A hybrid method to solve reliability-cost-oriented bi-objective machine configuration problem for a flow shop system

Author:

Yeh Cheng-Ta,Yeng Louis Cheng-Lu,Lin Yi-KueiORCID,Chao Yu-Lun

Abstract

AbstractMachine configuration is a crucial strategic decision in designing a flow shop system (FSS) and directly affects its performance. This involves selecting device suppliers and determining the number of machines to be configured. This study addresses a bi-objective optimization problem for an FSS that considers repair actions and aims to determine the most suitable machine configuration that balances the production reliability and purchase cost. A nondominated sorting genetic algorithm II (NSGA-II) is used to determine all the Pareto solutions. The technique for order preference by similarity to an ideal solution is then used to identify a compromise alternative. It is necessary to assess the production reliability of any machine configuration identified by the NSGA-II. The FSS under the machine configuration is modeled as a multistate flow shop network, and Absorbing Markov Chain and Recursive Sum of Disjoint Products are integrated into the NSGA-II for reliability evaluation. The experimental results of solar cell manufacturing demonstrate the applicability of the proposed hybrid method and validate the efficiency of the NSGA-II compared with an improved strength Pareto evolutionary algorithm.

Funder

Ministry of Science and Technology, Taiwan

National Yang Ming Chiao Tung University

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Decision Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3