A deep reinforcement learning assisted simulated annealing algorithm for a maintenance planning problem

Author:

Kosanoglu Fuat,Atmis Mahir,Turan Hasan HüseyinORCID

Abstract

AbstractMaintenance planning aims to improve the reliability of assets, prevent the occurrence of asset failures, and reduce maintenance costs associated with downtime of assets and maintenance resources (such as spare parts and workforce). Thus, effective maintenance planning is instrumental in ensuring high asset availability with the minimum cost. Nevertheless, to find such optimal planning is a nontrivial task due to the (i) complex and usually nonlinear inter-relationship between different planning decisions (e.g., inventory level and workforce capacity), and (ii) stochastic nature of the system (e.g., random failures of parts installed in assets). To alleviate these challenges, we study a joint maintenance planning problem by considering several decisions simultaneously, including workforce planning, workforce training, and spare parts inventory management. We develop a hybrid solution algorithm ($$\mathcal {DRLSA}$$ DRLSA ) that is a combination of Double Deep Q-Network based Deep Reinforcement Learning (DRL) and Simulated Annealing (SA) algorithms. In each episode of the proposed algorithm, the best solution found by DRL is delivered to SA to be used as an initial solution, and the best solution of SA is delivered to DRL to be used as the initial state. Different from the traditional SA algorithms where neighborhood structures are selected only randomly, the DRL part of $$\mathcal {DRLSA}$$ DRLSA learns to choose the best neighborhood structure to use based on experience gained from previous episodes. We compare the performance of the proposed solution algorithm with several well-known meta-heuristic algorithms, including Simulated Annealing, Genetic Algorithm (GA), and Variable Neighborhood Search (VNS). Further, we also develop a Machine Learning (ML) algorithm (i.e., K-Median) as another benchmark in which different properties of spare parts (e.g., failure rates, holding costs, and repair rates) are used as clustering features for the ML algorithm. Our study reveals that the $$\mathcal {DRLSA}$$ DRLSA finds the optimal solutions for relatively small-size instances, and it has the potential to outperform traditional meta-heuristic and ML algorithms.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Decision Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3